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Abstract

How and why functional specialization occurs in the human brain has been the topic of
extensive research. Recent advances in computer vision and deep learning have enabled the
use of convolutional neural networks (CNNs) to provide deeper insights into this aspect of
the brain. In this work we measure the extent of task segregation in CNNs on two tasks
that are segregated in the brain, namely, music genre classification and spoken word recog-
nition. Specifically, we explore the impact of different network architectures and batching
techniques on the selectivity of the networks.
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1. Introduction

Functional selectivity in the brain has been a topic of extensive research in neuroscience.
Proving a brain region is specialized for a specific function is in and of itself a difficult
challenge. Fusiform Face Area (FFA) is an example of such regions (Kanwisher and Yovel,
2006).
One interesting question is why specific functions—such as faces, objects, music, and spoken
words—are selected by specific regions of the brain. Dobs et al. (2022) suggest a computa-
tional reason behind it. To analyze their hypothesis, they train three types of Convolutional
Neural Networks: One trained only on faces, one trained only on objects and one dual-task
network trained on both faces and objects. They conduct two experiments where they:

• Compare the performance of the dual-task network with single networks. They show
that while dual-task networks can perform both tasks with the same accuracy as each
of the single networks, features of one task are not suitable for learning the other task.

• Identify 20% of the most important CNN filters for one task, lesion them (i.e. set
them to zero), and calculate the performance drop on the other task. This gives a
measure of task segregation in the neural network.

By observing a significant segregation between the two tasks, they conclude a computational
structure in the brain could explain the reason behind functional selectivity.
In this project, we aim to investigate the degree of task segregation between two other
tasks in CNNs, namely, music genre classification and spoken work recognition. Building

.



up on the work of Kell et al. (2018), we do the lesioning experiments from Dobs et al.
(2022) on CNNs trained on music and word data. Furthermore, we explore the impact
of different network architectures (e.g. AlexNet vs. VGGNet) as well as different data
batching techniques (mixed- vs. non-mixed batches).

2. Methods

In this section, we specify the task definitions, dataset creation process, and the experiments.

The tasks include:

• Music genre classification: Classification task between 61 different genres.

• Spoken word recognition: Classification between 467 words classes

For both tasks, we define the objective function to be cross-entropy loss between the correct
label and the predicted probabilities from the network.

2.1 Dataset

For the music genre classification task, we started with the MTG-Jamendo Dataset (Bog-
danov et al., 2019) which includes 55,000 audio tracks with 195 tags. 87 out of these
195 were genre tags. We took the top 61 classes which contained more than 400 audio
tracks for each genre. The resulting dataset was highly unbalanced, some classes had more
than 15,000 audio samples while some had 400. To overcome this imbalance, we cropped
random 2-second clips of the tracks from undersampled classes. As a result, each class con-
tained 15,000 2-second audio samples after this step. Hence the total dataset count became
915,000. Finally, we extracted Mel-Spectrogram features of size (128× 128) from the audio
waveform and used it as the input of the networks.

As for the words dataset, we took a similar approach: we started with Common Voice
Dataset (Ardila et al., 2020) which contains more than 1 million different recorded sentences.
To keep the consistency in data format and sample count, we filtered the audio tracks to
the sentences including the words that were used in Kell et al. (2018). We then removed the
classes with less than 400 samples, which yielded a total of 467 words. The next step was
to crop the audio tracks to 2-second clips around the target word. The cropping process
consisted of finding the word position in the sentence text and estimating the timestamp
where the word occurred based on it. Of course, this introduces some error, but a sample
testing showed that more than 95% of the words would happen in the selected 2-second
range. Similar to the music dataset, we resized the final audio clips to (128 × 128) Mel-
Spectrogram features. All of the Mel-Spectrogram features were normalized to have a mean
of 0 and standard deviation of 1 during training.

More details on the generation and parameters of the Mel-Spectrogram features can be
found in Appendix 4
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Figure 1: General structure in our AlexNet CNN. The output size K is set to 467 for word,
61 for music, and 528 for the dual task.

2.2 Networks

We did our experiments on two different CNN architectures:

• AlexNet: Inspired by Krizhevsky et al. (2012), this network consists of 5 convolutional
layers followed by 2 fully-connected layers and a final classification layer. Figure 1
demonstrates this architecture1.

• VGG-16: First introduced in Simonyan and Zisserman (2014), VGG-16 includes 13
convolutional layers, 2 fully-connected layers and a classification layer.

For the dual-task networks, output size is the aggregation of genre and word classes, which
is 61 + 467 = 528.
More network visualizations and full training hyperparameters can be found in Appendix 4

2.3 Experiments

We conducted three experiments:

2.3.1 Single vs. Dual-Task Networks

During this phase, we trained one word CNN, one music CNN, and one dual-tasked CNN
and computed their top-5 test accuracy. Our main goal is to answer the question: Will the
dual-task networks perform both tasks as well as single-task networks?

2.3.2 Mixed- vs. Non-Mixed Batches

We also investigate the effect of batching method on the dual-task networks. Specifically, we
find out how the training batches are created and fed to the CNNs impacts the performance
of the network. To that end, two different approaches for batching:

1. The architecture is visualized using (Haris Iqbal, 2020)
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• Non-mixed batches: with this approach, batches are created in turns based on the
task. That is, we give one music batch as input to the network, compute the cross-
entropy loss, update the weights, then create a word batch and repeat the process.

• Mixed batches: in contrast, we can have a batch consisting of both music and word
samples. With this approach, the network sees both types of data in each learning
iteration.

2.3.3 Lesioning Experiments

One way to measure the level of functional segregation is to lesion filters that are responsible
for one task and observe the behavior of the network on the other task. Our goal with this
experiment is to find out if we can see a selective impairment of the specialized function as
is the case with the human brain.
More concretely, after the dual-task networks are trained, we examine the last convolutional
layer of the networks (conv-5 in AlexNet and conv-13 in VGG-16). For each task, we disable
the filters one by one and run the lesioned network on both data types (music and word),
computing performance drop ratio as follows:
For a dataset X of size N and a filter f of the dual-task network—in this case, a melspec
dataset matrix of (N × 128× 128)—let acc(X) be the mean accuracy of the network on the
dataset and accf (X) be the accuracy of the network when f is lesioned (set to zero). The
drop ratio for this filter is computed as:

dropf (X) =
acc(X)− accf (X)

acc(X)
(1)

Our lesioning experiment then will have these steps:

1. Let F be the set of filters that are to be lesioned and Xw and Xm be the word and
music data, respectively.

2. Compute dropf (Xw) and dropf (Xm) for all f ∈ F .

3. Sort the drop ratios and select the top-20% filters for each task.

4. Lesion all of the top-20% filters for each task, evaluate the lesioned network on both
tasks.

If lesioning top-20% of one task does not affect the performance of the other task, it suggests
a high segregation in the CNN, while simultaneous performance drops will signal that filters
have learned features that are common between the two tasks.

3. Results

Dual-task AlexNet networks can perform on par with single networks
After training all three types of network (word, music, and dual-task), we noticed that the
dual-task networks can perform the same as single networks on both tasks in terms of top-5
accuracy (Figure 2a). We observed that with non-mixed batch training, the network overfit
more often than it does with mixed-batch training.
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(a) (b)

Figure 2: Comparison of top-5 accuracy of single- and dual-task networks with mixed and
non-mixed training. (a) AlexNet top-5 accuracies. Both mixed and non-mixed training can
perform both tasks as well as single-task networks. (b) VGG-16 top-5 accuracies. While
mixed training can perform close to single-task networks, non-mixed training results in
worse performance.

While this was the case for both mixed- and non-mixed batch trainings in AlexNet, the
results are a little different.

Dual-task VGG-16 performs on par with single networks only with mixed-batch
training

With VGG-16, we could not make the non-mixed models converge to the same accuracies
as the single-task networks. In contrast, mixed-batch training almost always resulted in the
same performance (Figure 2b). This can suggest that mixed-batch training is more robust
to overfitting.

Lesioning shows more segregation in non-mixed batch networks than mixed-
batch network As shown in figure 3, we can see that the lesioning of each task drops
the performance of that task significantly while being indifferent to the other task in the
non-mixed networks. With the mixed-batch CNNs, this effect is not as significant. This
can mean that with non-mixed training, the network shows more segregation between the
tasks.

4. Discussion

In this study, we explored task segregation between music and word in convolutional neural
networks and examined the impact of two implementational approaches, namely architec-
ture and batching, on the training and lesioning of CNNs. While this shed some light on the
role these implementational details play, there are still myriad moving parts in the training
process that can be explored further.

Some future directions include:
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(a) (b)

(c) (d)

Figure 3: Lesioning experiments on AlexNet. (a) Lesioning on non-mixed batches suggests
that lesioning top-20% filters of one task significantly drops the top-5 accuracy for the same
task while having an insignificant drop in the other task. (b) With the mixed-batch model,
we ovserve a much more slight amount of the lesioning effect. (c), (d) The same pattern
can be observed in VGG-16 models.

• Ablation studies: to have a more complete picture of the lesioning experiments, we
need to ablate various factors. This includes the tasks itself; an experiment is needed
where we do the same lesioning experiment on two random subsets of music and word
classes as done in Dobs et al. (2022).

• Batch normalization: we used batch normalization layers in both network archi-
tectures that we used. One can argue that this negates the effect of lesioning. While
we conducted partial experiments without batch normalization layers—and it yielded
more or less the same result—a more complete future experiment can bring to light
more interesting results.

• Lesioning method: the lesioning done in Dobs et al. (2022) goes beyond our method
by doing a greedy search on different subsets of the filters to find the top-20% most
contributing filters for each task. This means we cannot directly compare our results
with their lesioning of faces and objects.

• Datasets: using data different from our datasets can result in different and possibly
interesting outcomes. This can be also the topic of a future experiment.
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A major challenge of this project was the lack of a large-enough open dataset with spoken
words; hence the most time-consuming part of this project was the generation of word and
music datasets. Ultimately, the compiled datasets can facilitate any future work in the
music and word research.

We hope that this project can be a starting point for further studies that can expose more
aspects of learning not only in CNNs, but also in the human brain.
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Appendix A. Specifications of Mel-Spectrogram Features

Here we show the important parameters that we used to generate both word and music
Mel-Spectrogram features:

Sample Rate Window Size Hop Size Number of Bands Output Size Resized Output Size

12000 512 256 96 (96, 95) (128, 128)

Mel-Spectrogram important attributes and their values.

Appendix B. AlexNet and VGG Architectures and Hyperparameters

All of the models were trained on PyTorch and on V100 and A100 GPUs. The training of
single-task networks was done in 10-15 hours for 10 epochs. The dual-task networks took
up to 24 hours for 10 epochs of training.

Here we look at the two architectures, i.e., AlexNet and VGG-16:
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Visualization of CNN architectures.
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Finally, here are the hyperparameters we used for training AlexNet and VGG-16:

Total Parameters Loss Function Optimizer Learning Rate Weight Decay Batch Size

AlexNet 101,057,744 Cross-Entropy Adam 5e-4 → 1e-5 5e-5 64

VGG-16 136,446,416 Cross-Entropy Adam 1e-4 → 1e-6 5e-4 64

CNN training hyperparameters.
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